skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bhatt, Sujay"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 6, 2026
  2. null (Ed.)
  3. This paper considers policy search in continuous state-action reinforcement learning problems. Typically, one computes search directions using a classic expression for the policy gradient called the Policy Gradient Theorem, which decomposes the gradient of the value function into two factors: the score function and the Q-function. This paper presents four results: (i) an alternative policy gradient theorem using weak (measure-valued) derivatives instead of score-function is established; (ii) the stochastic gradient estimates thus derived are shown to be unbiased and to yield algorithms that converge almost surely to stationary points of the non-convex value function of the reinforcement learning problem; (iii) the sample complexity of the algorithm is derived and is shown to be O(1/ k); (iv) finally, the expected variance of the gradient estimates obtained using weak derivatives is shown to be lower than those obtained using the popular score-function approach. Experiments on OpenAI gym pendulum environment illustrate the superior performance of the proposed algorithm. 
    more » « less